Plots
Map
Variables
Style
Design
Variables
Style
Design
Upload Form
Parameters:
For security reasons, the structure of your data must contain only the columns listed below. The presence of any other column, including empty ones, will result in an error.
-
group
: The column name must match. This column is optional and is used to differentiate your data in the plots. -
sample
: The column name must match. This column is optional and is used to give each data point a name/ID. -
latitude
: The column name must start with “lat”. This column is optional but if provided, the columnlongitude
must be provided as well. This column must contain the latitude part of the geographic coordinates as decimal value. -
longitude
: The column name must start with “long” or “lng”. This column is optional but if provided, the columnlatitude
must be provided as well. This column must contain the latitude part of the geographic coordinates as decimal value. - Pb isotope ratios:
- Supported ratios are: 204Pb-normalised ratios, 206Pb-normalised ratios, 206Pb/207Pb, and 208Pb/207Pb
- Column names must contain at least the last number of the
isotopes’ atomic masses in the correct order. For example, valid
column names for the ratio 208Pb/207Pb
are:
8/7
,208Pb/207Pb
,208/207
,Pb208_Pb207
,208_7Pb
,208.207
. However, “7_8” or any variant of it would throw an error, because the isotope ratio 207Pb/208Pb is not supported. - All columns are optional and any missing ratios will be automatically calculated from the provided values. If, for examples, only 204Pb-normalised ratios are included, the 206Pb-normalised ratios will be calculated by the app.
- To make full use of the app, provide any combination that allows the calculation of all other ratios. For example, if only the isotope ratios 207Pb/206Pb and 208Pb/206Pb are uploaded, no isotope ratios with 204Pb can be calculated.
After upload, the uploaded data is checked for consistency. If a check does not succeed, an error will be thrown in the “Data viewer” tab:
- “A problem occurred while parsing your file. Please chose the
appropriate parameters for reading your data.”
Explanation: The uploaded file was not identified as a table, i.e. rows have different numbers of columns or the file contains less than two columns. The most likely cause is that you picked the wrong separator. Choose another separator. If the error persists, revise your file in a text editor and upload it again. - “One or more columns in your data set are not supported by
GlobaLID…”
Explanation: The uploaded file contains columns other than the permitted ones or at least one column in your file does not adhere to the naming conventions for columns names outlined above. Revise the column names in your file and upload it again. - “Columns for isotope ratios must contain only numeric values.”
Explanation: Values in at least one column for isotope ratios were not recognised as numbers. The reason might be that you picked the wrong decimal sign, that the values were accidentally saved as text before upload or that at least one ratio in a column contains a letter. Try setting the upload parameter to the other decimal sign. If the error persists, revise the file in a text editor and upload it again. - “Columns for coordinates must contain only numeric values.”
Explanation: Values in at least one column for the geographic coordinates were not recognised as numbers. The reason might be that you picked the wrong decimal sign, that the values were accidentally saved as text before upload or that at least one coordinate in a column contains a letter. Try setting the upload parameter to the other decimal sign. If the error persists, revise the file in a text editor and upload it again. - “One or more of the latitude coordinates is out of bounds.” | “One
or more of the longitude coordinates is out of bounds.”
Explanation: At least one value in the column for the respective geographic coordinate is outside the allowed range. Allowed ranges are: -90 to 90 for the latitude, -180 and 180 for the longitude. Revise the coordinates and upload the file again. - “Please provide also the coordinates for the longitude or no
coordinates at all.” | “Please provide also the coordinates for the
latitude or no coordinates at all.”
Explanation: The uploaded files includes only the latitude or longitude. Revise your file by either adding a column for the missing coordinate or by removing the included coordinate.
Download plots and datasets
Included publications
Abdel-Motelib, A., Bode, M., Hartmann, R., Hartung, U., Hauptmann, A., and Pfeiffer, K., 2012, Archaeometallurgical expeditions to the Sinai Peninsula and the Eastern Desert of Egypt (2006, 2008), Metalla, 19(½), 3–59.
Aleksandrov, M., 1992, Metalogenetske karakteristike polimetaličnog rudnog polja Sase, Istočna Makedonija, PhD thesis, Goce Delčev University, Štip.
Amov, B. G., 1999, Lead isotope data for ore deposits from Bulgaria and the possibility for their use in archaeometry, Berliner Beiträge zur Archäometrie, 16, 5–19.
Amov, B., Bogdanov, B., and Baldjieva, T., 1974, Lead isotope composition and some features concerning the genesis and the age of the ore deposits in south Bulgaria, 4th IAGOD Symposium, Varna, Bulgaria.
Amov, B., Breskovska, B., Baldzhieva, C. T., Evstatieva, S. S., and Mankov, S., 1983, O результатах масс-спектрального анализа свинца свинцо-во-цинковъх месторождений Звездельского рудного поля \[On the results of mass spectral analysis of the lead-zinc deposits of the Zvezdel ore field\], Godine na BMGI, C, 29(2), 79–90.
Amov, B., Kolkovski, B., and Dimitrov, R., 1993, Генезис и възраст на хидротермални рудни минерализации в родопската металогенна зона въз основа на изотопния състав на оловото в галенит \[Genesis and age of hydrothermal ore mineralization in the Rhodope metallogenic zone on the basis of the isotopic composition of lead in galena\], Annuaire de l’Université de Sofia “St. Kliment Ohridski” Faculté de Géologie et Géographie, 85, 73–98.
Andráš, P., Chovan, M., Dirner, V., and Krá, J., 2010, Pb-Isotope Study in Sb-Mineralisation from Western Carpathian (Slovakia), Carpathian Journal of Earth and Environmental Sciences, 5(2), 71–80.
Asael, D., Matthews, A., Bar-Matthews, M., Harlavan, Y., and Segal, I., 2012, Tracking redox controls and sources of sedimentary mineralization using copper and lead isotopes, Chemical Geology, 310–311, 23–35 DOI:10.1016/j.chemgeo.2012.03.021
Barnes, I. L., Shields, W. R., Murphy, T. J., and Brill, R. H., 1974, Isotopic analyses of Laurion lead ores, In Archaeological Chemistry (ed. C. W. Beck), 1–10, Advances in Chemistry Series 138, Washington D.C. DOI:10.1021/ba-1974-0138.ch001
Baron, S., Tămaş, C. G., Cauuet, B., and Munoz, M., 2011, Lead isotope analyses of gold–silver ores from Roşia Montană (Romania): a first step of a metal provenance study of Roman mining activity in Alburnus Maior (Roman Dacia), Journal of Archaeological Science, 38(5), 1090–100. DOI:10.1016/j.jas.2010.12.004
Barton, J. M., Blaine, J. L., Doig, R., and Byron, C. L., 1994, The geological setting and style of copper mineralization at the Bushman group of deposits, northeastern Botswana, Journal of African Earth Sciences, 18(2), 87–97. DOI:10.1016/0899-5362(94)90022-1
Begemann, F., Hauptmann, A., Schmitt-Strecker, S., and Weisgerber, G., 2010, Lead isotope and chemical signature of copper from Oman and its occurrence in Mesopotamia and sites on the Arabian Gulf coast, Arabian Archaeology and Epigraphy, 21(2), 135–69. DOI:10.1111/j.1600-0471.2010.00327.x
Begemann, F., Schmitt-Strecker, S., Pernicka, E., and Lo Schiavo, F., 2001, Chemical composition and lead isotopy of copper and bronze from Nuragic Sardinia, European Journal of Archaeology, 4, 43–85. DOI:10.1179/eja.2001.4.1.43
Begemann, F., and Schmitt-Strecker, S., 2009, Über das frühe Kupfer Mesopotamiens, Iranica Antiqua, 44, 1–45. DOI:10.2143/IA.44.0.2034374
Bird, G., Brewer, P. A., Macklin, M. G., Nikolova, M., Kotsev, T., Mollov, M., and Swain, C., 2010, Pb isotope evidence for contaminant-metal dispersal in an international river system: The lower Danube catchment, Eastern Europe, Applied Geochemistry, 25(7), 1070–84. DOI:10.1016/j.apgeochem.2010.04.012
Bode, M., 2008, Archäometallurgische Untersuchungen zur Blei-/Silbergewinnung im Germanien der frühen Römischen Kaiserzeit, PhD thesis, Westfälische Wilhelms-Universität Münster, Münster.
Bolhar, R., Whitehouse, M. J., Milani, L., Magalhães, N., Golding, S. D., Bybee, G., LeBras, L., and Bekker, A., 2020, Atmospheric S and lithospheric Pb in sulphides from the 2.06 Ga Phalaborwa phoscorite-carbonatite Complex, South Africa, Earth and Planetary Science Letters, 530, 115939. DOI:10.1016/j.epsl.2019.115939
Boni, M., and Koeppel, V., 1985, Ore-lead isotope pattern from the Iglesiente-Sulcis Area (SW Sardinia) and the problem of remobilization of metals, Mineralium Deposita, 20(3), 185–93. DOI:10.1007/BF00204563
Brill, R. H., 1970, Lead and Oxygen Isotopes in Ancient Objects, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 269(1193), 143–64. DOI:10.1098/rsta.1970.0093
Brill, R. H., Barnes, I. L., and Adams, B., 1974, Lead Isotopes in Some Ancient Egyptian Objects, In Recent Advances in Science and Technology of Materials (ed. A. Bishay), Vol. 3, 9–27, Plenum, New York.
Brodtkorb, M. K., and Brodtkorb, A., 1982, Datos isotópicos de plomo de la mineralización de la Mina La Helvecia, prov. de La Rioja, Revista de la Asociación Geológica Argentina, 37(3), 358–61.
Burnard, P. G., Sweeney, M. A., Vaughan, D. J., Spiro, B., and Thirlwall, M. F., 1993, Sulfur and lead isotope constraints on the genesis of a southern Zambian massive sulfide deposit, Economic Geology, 88(2), 418–36. DOI:10.2113/gsecongeo.88.2.418
Calvez, J. Y., and Lescuyer, J. L., 1991, Lead Isotope Geochemistry of Various Sulphide Deposits from the Oman Mountains, In Ophiolite Genesis and Evolution of the Oceanic Lithosphere (eds. Tj. Peters, A. Nicolas, and R. G. Coleman), Vol. 5, 385–97, Petrology and Structural Geology, Springer Netherlands, Dordrecht. DOI:10.1007/978-94-011-3358-6_19
Caron, C., Lancelot, J., Omenetto, P., and Orgeval, J. J., 1997, Role of the Sardic tectonic phase in the metallogenesis of SW Sardinia (Iglesiente): lead isotope evidence, European Journal of Mineralogy, 9(5), 1005–16. DOI:10.1127/ejm/9/5/1005
Chalkias, S., Vavelidis, M., Schmitt-Strecker, S., and Begemann, F., 1988, Geologische Interpretation der Blei-Isotopenverhältnisse von Erzen der Insel Thasos, der Ägäis und Nordgriechenlands, In Antike Edel- und Buntmetallgewinnung auf Thasos, 59–74, Der Anschnitt Beiheft 6, Bochum.
Chalkias, S., and Vavelidis, M., 1989, Interpretation of lead-isotope data from Greek Pb-Zn deposits, based on an empirical two-stage model, Bulletin of the Geological Society of Greece, 23(2), 177–93.
Chamberlain, V. E., and Gale, N. H., 1980, The Isotopic Composition of lead in Greek coins and in Galena from Greece and Turkey, In Proc. 16th Inst. Symp. on Archeometry and Archaeological Prospection, Edinburgh 1976, 139–55, Publ.in the Proceedings, National Museum of Scotland, Edinburgh.
Chegini, N., Momenzadeh, M., Parzinger, H., Pernicka, E., Stoellner, T., Vatandoust, R., Weisgerber, G., Boroffka, N., Chaichi, A., Hasanalian, D., Hezarkhani, Z., Eskandari, M., and Nezafati, N., 2000, Preliminary report on archaeometallurgical investigations around the prehistoric site of Arisman near Kashan, western Central Iran, Archaologische Mitteilungen aus Iran und Turan, 32, 281–318.
Chen, J. H., and Pallister, J. S., 1981, Lead Isotopic Studies of the Samail Ophiolite, Oman, Journal of Geophysical Research, 86(B4), 2699–708. DOI:10.1029/JB086iB04p02699
Chernyshev, I. V., Kovalenker, V. A., Chugaev, A., Damian, G., Damian, F., Iatan, L. E., and Seghedi, I., 2014, New high-precision lead isotope analyses of galena from Romanian ore districts and a review, Romanian Journal of Mineral Deposits, 87(1), 83–6.
Cook, N. J., and Chiaradia, M., 1997, Sources of base metal mineralization in the Baia Borsa orefield, NW Romania: constraints from lead isotopes, In Mineral deposits (ed. H. Papunen), 813–6, Balkema, Rotterdam.
Coomer, P. G., Coward, M. P., and Lintern, B. C., 1977, Stratigraphy, structure and geochronology of ore leads in the Matsitama Schist belt of Northern Botswana, Precambrian Research, 5(1), 23–41. DOI:10.1016/0301-9268(77)90021-3
Cumming, G. L., Kesler, S. E., and Krstic, D., 1981, Source of lead in Central American and Caribbean mineralization, II. Lead isotope provinces, Earth and Planetary Science Letters, 56, 199–209. DOI:10.1016/0012-821X(81)90127-8
Cumming, G. L., and Kesler, S. E., 1976, Source of lead in Central American and Caribbean mineralization, Earth and Planetary Science Letters, 31(2), 262–8. DOI:10.1016/0012-821X(76)90218-1
Dayton, J. E., and Dayton, A. M., 1986, Uses and limitations of lead isotopes in archaeology, In Proceedings of the 24th International Archaeometry Symposium (eds. J. S. Olin, and M. J. Blackman), 13–41, Smithsonian Institution Press, Washington D.C.
De Launay, M. L., 1894, Les Minerais d’Argent de Milo, Annales des Mines, 9ième Série(VI), 345–53.
Deleon, G., 1968, Primena metoda nuklearne geologije u odredivanju apsolutne starosti stena na teritoriji SR Makedonije, PhD thesis, University of Belgrade, Belgrade.
Doe, B. R., and Rohrbough, R., 1977, Lead isotope data bank: 3,459 samples and analyses cited, Open-File Report. DOI:10.3133/ofr79661
Duane, M. J., Kruger, F. J., Roberts, P. J., and Smith, C. B., 1991, Pb and Sr isotope and origin of Proterozoic base metal (fluorite) and gold deposits, Transvaal Sequence, South Africa, Economic Geology, 86(7), 1491–505. DOI:10.2113/gsecongeo.86.7.1491
Durali-Müller, S., 2006, Roman lead and copper mining in Germany: their origin and development through time, deduced from lead and copper isotope provenance studies, PhD Thesis, Goethe-Universität Frankfurt am Main, Frankfurt a.M., Germany.
Ehya, F., Lotfi, M., and Rasa, I., 2010, Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study, Journal of Asian Earth Sciences, 37(2), 186–94. DOI:10.1016/j.jseaes.2009.08.007
Frei, R., 1992, Isotope (Pb, Rb-Sr, S, O, C, U-Pb) geochemical investigations on Tertiary intrusives and related mineralizations in the Serbomacedonian Pb-Zn, Sb+Cu-Mo metallogenetic province in Northern Greece, PhD thesis, ETH Zürich, Zürich. DOI:10.3929/ethz-a-000692261
Frei, R., 1995, Evolution of mineralizing fluid in the porphyry copper system of the Skouries Deposit, Northeast Chalkidiki (Greece): evidence from combined Pb-Sr and stable isotope data, Economic Geology, 90(4), 746–62. DOI:10.2113/gsecongeo.90.4.746
Fölling, P. G., Zartman, R. E., and Frimmel, H. E., 2000, A novel approach to double-spike Pb–Pb dating of carbonate rocks: examples from Neoproterozoic sequences in southern Africa, Chemical Geology, 171(1–2), 97–122. DOI:10.1016/S0009-2541(00)00204-7
Gale, N. H., 1978, Lead Isotopes and Aegean Metallurgy, In Thera and the Aegean world I. Papers presented at the Second International Scientific Congress, Santorini, Greece, August, 1978 (ed. C. Doumas), 529–45, London.
Gale, N. H., 1979, Lead Isotopes and Archaic Silver Coins, Archeo-Physika, 10, 194–208.
Gale, N. H., 1980, Some aspects of lead and silver mining in the Aegean, In Thera and the Aegean World II. Proceedings of the Second International Scientific Congress, Santorini, Greece, August 1978 (ed. C. Doumas), 161–95, Aris and Phillips Ltd., London.
Gale, N. H., 1998, The Role of Kea in Metal Production and Trade in the LBA, In Kea-Kythnos: History and Archaeology. Proceedings of an International Symposium, Kea-Kythnos, 22-25 June 1994 (eds. L. G. Mendoni, and A. J. Mazarakis), Vol. 27, 737–58, Meletemata, Athen.
Gale, N. H., Gentner, W., and Wagner, G. A., 1980, Mineralogical and Geographical Silver Sources of Archaic Greek Coinage, In Metallurgy in Numismatics (eds. D. M. Metcalf, and W. A. Oddy), Vol. 1, 3–49, Special publication Royal Numismatic Society, London.
Gale, N. H., Picard, O., and Barrandon, J. N., 1988, The Archaic Thasian silver coinage, In Antike Edel- und Buntmetallgewinnung auf Thasos (eds. G. A. Wagner, and G. Weisgerber), Vol. 6, 212–23, Der Anschnitt Beiheft, Deutsches Bergbau-Museum Bochum, Bochum.
Gale, N. H., Stos-Gale, Z. A., Lilov, P., Dimitrov, M., and Todorov, T., 1991, Recent Studies of Eneolithic Copper Ores and Artefacts in Bulgaria, In Decouverte du Metal (eds. J. Mohen, and C. Eluere), Vol. 2, 49–75, Millénaires, Picard, Paris.
Gale, N. H., Stos-Gale, Z. A., Papastamataki, A., and Leonis, K., 1985, Copper Sources and Copper Metallurgy in the Aegean Bronze Age, In Furnaces and smelting technology in antiquity. Proceedings of the Symposium on Early Furnace Technology, British Museum, London 1982 (eds. P. T. Craddock, and M. J. Hughes), Vol. 48, 81–102, British Museum Occasional Paper, British Museum, London.
Gale, N. H., and Stos-Gale, Z. A., 1981, Cycladic Lead and Silver Metallurgy, The Annual of the British School at Athens, 76, 169–224. DOI:10.1017/S0068245400019523
Gale, N. H., and Stos-Gale, Z. A., 1985, Cyprus and the Bronze Age Metals Trade, In Proceedings of the Second International Congress of Cypriot Studies, Nicosia 1982 (eds. T. Papadopoullos, and S. A. Chatzēstyllēs), 51–66, Society of Cypriot Studies, Nicosia.
Gale, N. H., and Stos-Gale, Z. A., 1986, Oxhide Copper Ingots in Crete and Cyprus and the Bronze Age Metals Trade, The Annual of the British School at Athens, 81, 81–100. DOI:10.1017/S0068245400020098
Gale, N. H., and Stos-Gale, Z. A., 1987, Oxhide ingots from Sardinia, Crete and Cyprus and the Bronze Age copper trade: New scientific evidence, In Nuragic Sardinia and the Mycenaean world, Studies in Sardinian archaeology 3 (ed. M. Balmuth), Vol. 387, 135–78, BAR International Series, Bar, Oxford.
Gale, N. H., and Stos-Gale, Z. A., 1988, Recent evidence for a possible Bronze Age metal trade between Sardinia and the Aegean, In Problems in Greek Prehistory, Proceedings of the Centenary Conference of the British School of Archaeology at Athens, Manchester 1986 (eds. E. B. French, and K. A. Wardle), 355–85, Bristol Classical Press, Bristol.
Gemmell, J. B., Zantop, H., and Meinert, L., 1992, Genesis of the Aguilar Zinc-Lead-Silver Deposit, Argentina:Contact Metasomatic vs. Sedimentary Exhalative, Economic Geology, 87, 2085–112. DOI:10.2113/gsecongeo.87.8.2085
Haest, M., Schneider, J., Cloquet, C., Latruwe, K., Vanhaecke, F., and Muchez, P., 2010, Pb isotopic constraints on the formation of the Dikulushi Cu–Pb–Zn–Ag mineralisation, Kundelungu Plateau (Democratic Republic of Congo), Mineralium Deposita, 45(4), 393–410. DOI:10.1007/s00126-010-0279-6
Harlavan, Y., Bar-Matthews, M., Matthews, A., Asael, D., and Segal, I., 2017, Tracing the sources of sedimentary Cu and Mn ores in the Cambrian Timna Formation, Israel using Pb and Sr isotopes, Journal of Geochemical Exploration, 178, 67–82. DOI:10.1016/j.gexplo.2017.03.016
Harms, U., Heckmann, H., Weyer, S., and Mali, H., 2012, Geochemistry of galena and lead isotope chemistry of postvariscan ore veins within Niederberg Area, Germany, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 163(1), 69–89. DOI:10.1127/1860-1804/2012/0163-0069
Hauptmann, A., Begemann, F., Heitkemper, E., Pernicka, E., and Schmitt-Strecker, S., 1992, Early Copper Produced at Feinan, Wadi Arabah, Jordan: The Composition of Ores and Copper, Archeomaterials, 6, 1–33.
Hauptmann, A., Begemann, F., and Schmitt-Strecker, S., 1999, Copper Objects from Arad: Their Composition and Provenance, Bulletin of the American Schools of Oriental Research, 314, 1–17. DOI:10.2307/1357449
Höhndorf, A., and Vetter, U., 1999, The Sanyati Ore deposits in Zimbabwe: Pb-isotopic investigation of sulfide and oxide ores, Zeitschrift für Angewandte Geologie, 45(1), 11–3.
IGME Xanthi cit. in: Frei, R., 1992, Isotope (Pb, Rb-Sr, S, O, C, U-Pb) geochemical investigations on Tertiary intrusives and related mineralizations in the Serbomacedonian Pb-Zn, Sb+Cu-Mo metallogenetic province in Northern Greece, PhD thesis, ETH Zürich, Zürich.
Jaguin, J., Poujol, M., Boulvais, P., Robb, L. J., and Paquette, J. L., 2012, Metallogeny of precious and base metal mineralization in the Murchison Greenstone Belt, South Africa: indications from U–Pb and Pb–Pb geochronology, Mineralium Deposita, 47(7), 739–47. DOI:10.1007/s00126-012-0422-7
Janković, S., 1978, Изотопни састав олова у појединим терцијарним олово-цинковим српско-македонске металогенетске провинције \[The isotopic composition of lead in some tertiary lead-zinc deposits within the Serbo-Macedonian metallogenic province (Yugoslavia)\], Geoloski Anali Balkanskog Poluostrva, 42, 507–25.
Jović, B., 1983, Godišnji izveštaji o izvršenim geološkim istraživanjima Pb-Zn u rudnom polju Blagodat, FSD Republičkog društvenog fond za geol. istr., Belgrade.
Kalogeropoulos, S. I., Kilias, S. P., Bitzios, D. C., Nicolaou, M., and Both, R. A., 1989, Genesis of the Olympias carbonate-hosted Pb-Zn (Au, Ag) sulfide ore deposit, eastern Chalkidiki Peninsula, northern Greece, Economic Geology, 84(5), 1210–34. DOI:10.2113/gsecongeo.84.5.1210
Kamona, A. F., Lévêque, J., Friedrich, G., and Haack, U., 1999, Lead isotopes of the carbonate-hosted Kabwe, Tsumeb, and Kipushi Pb-Zn-Cu sulphide deposits in relation to Pan African orogenesis in the Damaran-Lufilian Fold Belt of Central Africa, Mineralium Deposita, 34(3), 273–83. DOI:10.1007/s001260050203
Kirnbauer, T., Wagner, T., Taubald, H., and Bode, M., 2012, Post-Variscan hydrothermal vein mineralization, Taunus, Rhenish Massif (Germany): Constraints from stable and radiogenic isotope data, Ore Geology Reviews, 48, 239–57. DOI:10.1016/j.oregeorev.2012.03.010
Koppel, V. H., and Saager, R., 1974, Lead Isotope Evidence on the Detrital Origin of Witwatersrand Pyrites and its Bearing on the Provenance of the Witwatersrand Gold, Economic Geology, 69(3), 318–31. DOI:10.2113/gsecongeo.69.3.318
Kouzmanov, K., Moritz, R., Von Quadt, A., Chiaradia, M., Peytcheva, I., Fontignie, D., Ramboz, C., and Bogdanov, K., 2009, Late Cretaceous porphyry Cu and epithermal Cu-Au association in the Southern Panagyurishte district, Bulgaria: the paired Vlaykov Vruh and Elshitsa deposits, Mineralium Deposita, 44, 611–46. DOI:10.1007/s00126-009-0239-1
Krahn, L., and Baumann, A., 1996, Lead isotope systemactic of epigenetic lead-zinc mineralization in the western part of the Rheinisches Schiefergebirge, Germany., Mineralium Deposita, 31(3), 225–37. DOI:10.1007/BF00204029
Kubat, I., Ramović, E., Tomčević, D., Pezdić, J., and Dolenac, T., 1979, The results of the investigation of S, O, C and Pb isotopic composition in some ore deposits and occurrences in Bosnia and Herzegovina, Geološki Glasnik, 24/25, 61–84.
Köppel, V., 1980, Lead-isotope studies of stratiform ore deposits of the Namaqualand, NW Cape Province, South Africa, and their implications on the age of the Bushmanland Sequence, In Proceedings of the fifth quadrennial IAGOD symposium, 195–207, Schweizerbart, Stuttgart.
Köppel, V., and Schroll, E., 1985, Herkunft des Pb der triassischen Pb-Zn-Vererzungen in den Ost-und Südalpen: Resultate bleiisotopengeochemischer Untersuchungen, Archiv für Lagerstättenforschung der Geologischen Bundesanstalt, 6, 215–22.
Large, D., Schaeffer, R., and Höhndorf, A., 1983, Lead Isotope Data from Selected Galena Occurrences in the North Eifel and North Sauerland, Germany, Mineralium Deposita, 18, 235–43. DOI:10.1007/BF00206211
Leveque, J., and Haack, U., 1993, Pb isotopes of hydrothermal ores in the Harz, In Formation of hydrothermal vein deposits: A case study of the Pb-Zn, barite and flourite deposits of the Harz Mountains (eds. P. Möller, and V. Lüders), 197–210, Monograph Series on Mineral Deposits 30, Gebrüder Borntraeger, Stuttgart.
Lippolt, H. J., Schorn, U., and Pidgeon, R. T., 1983, Genetic implications of new lead isotope measurements on Schwarzwald vein and Upper Triassic sediment galenas, Geologische Rundschau, 72(1), 77–104. DOI:10.1007/BF01765901
Ludwig, K. R., Vollmer, R., Turi, B., Simmons, K. R., and Perna, G., 1989, Isotopic constraints on the genesis of base-metal ores in southern and central Sardinia, European Journal of Mineralogy, 1, 657–66. DOI:10.1127/ejm/1/5/0657
López, L., 2012, Geología y metalogénesis del distrito polimetálico Purísima-Rumicruz, departamento de Cochinoca, provincia de Jujuy, Doctor en Ciencias Naturales, Universidad Nacional de La Plata. DOI:10.35537/10915/25861
Macfarlane, A. W., Marcet, P., LeHuray, A. P., and Petersen, U., 1990, Lead isotope provinces of the Central Andes inferred from ores and crustal rocks, Economic Geology, 85(8), 1857–80. DOI:10.2113/gsecongeo.85.8.1857
Macfarlane, A. W., and Lechtman, H. N., 2016, Andean Ores, Bronze Artifacts, and Lead Isotopes: Constraints on Metal Sources in Their Geological Context, Journal of Archaeological Method and Theory, 23(1), 1–72. DOI:10.1007/s10816-014-9225-8
Marchev, P., and Moritz, R., 2006, Isotopic composition of Sr and Pb in the Central Rhodopean ore fields: Inferences for the genesis of the base-metal deposits, Geologica Balcanica, 35(3–4), 49–61.
Marcoux, E., Grancea, L., Lupulescu, M., and Milesi, J., 2002, Lead isotope signatures of epithermal and porphyry-type ore deposits from the Romanian Carpathian Mountains, Mineralium Deposita, 37(2), 173–184. DOI:10.1007/s00126-001-0223-x
Marschik, R., Bauer, T., Hensler, A.-S., Skarpelis, N., and Hölzl, S., 2010, Isotope Geochemistry of the Pb-Zn-Ba(-Ag-Au) Mineralization at Triades-Galana, Milos Island, Greece: Triades-Galana Pb-Zn-Ba Mineralization, Resource Geology, 60(4), 335–47. DOI:10.1111/j.1751-3928.2010.00139.x
Mathez, E. A., and Waight, T. E., 2003, Lead isotopic disequilibrium between sulfide and plagioclase in the bushveld complex and the chemical evolution of large layered intrusions, Geochimica et Cosmochimica Acta, 67(10), 1875–88. DOI:10.1016/S0016-7037(02)01294-2
Mirnejad, H., Simonetti, A., and Molasalehi, F., 2011, Pb isotopic compositions of some Zn–Pb deposits and occurrences from Urumieh–Dokhtar and Sanandaj–Sirjan zones in Iran, Ore Geology Reviews, 39(4), 181–7. DOI:10.1016/j.oregeorev.2011.02.002
Mirnejad, H., Simonetti, A., and Molasalehi, F., 2015, Origin and formational history of some Pb-Zn deposits from Alborz and Central Iran: Pb isotope constraints, International Geology Review, 57(4), 463–71. DOI:10.1080/00206814.2015.1013510
Molasalehi, F., and Mirnejad, H., 2010, Comparing Pb isotopic composition of Kuhe Surmeh deposit with some of the Pb-Zn deposits from Central Iran and evaluating the role of Neo-Tethys in Pb remobilization in Central Iran, Journal of Science, 36(1), 11–7.
Molofsky, L. J., Killick, D., Ducea, M. N., Macovei, M., Chesley, J. T., Ruiz, J., Thibodeau, A., and Popescu, G. C., 2014, A novel approach to lead isotope provenance studies of tin and bronze: applications to South African, Botswanan and Romanian artifacts, Journal of Archaeological Science, 50, 440–50. DOI:10.1016/j.jas.2014.08.006
Mudrinic, C., and Serafimovski, T., 1992, Lead, sulphur, oxygen and carbon isotopes in the Zletovo ore field (Eastern Macedonia), Geologica Balcanica, 24(3), 39–48.
Nebel, M. L., Hutchinson, R., and Zartman, R. E., 1991, Metamorphism and polygenesis of the Madem Lakkos polymetallic sulfide deposit, Chalkidiki, Greece, Economic Geology, 86(1), 81–105. DOI:10.2113/gsecongeo.86.1.81
Nezafati, N., Pernicka, E., and Momenzadeh, M., 2009, Introduction of the Deh Hosein ancient tin-copper mine, Western Iran: Evidence from Geology, Archaeology, Geochemistry and Lead Isotope Data, Turkish Academy of Sciences Journal of Archaeology (TUBA-AR), 12, 223–36. DOI:10.22520/tubaar.2009.0018
Nezafati, N., Pernicka, E., and Momenzadeh, M., 2011, Early Tin-Copper Ore from Iran, a possible Clue for the Enigma of Bronze Age Tin, In Anatolian Metal V (ed. Ü. Yalçin), Vol. 24, 211–30, Der Anschnitt, Beiheft, Bochum.
Niederschlag, E., Pernicka, E., Seifert, T., and Bartelheim, M., 2003, The determination of lead isotope ratios by multiple collector ICP-MS: A case study of Early Bronze Age artefacts and their possible relation with ore deposits of the Erzgebirge, Archaeometry, 45(1), 61–100. DOI:10.1111/1475-4754.00097
OXALID: Oxford Archaeological Lead Isotope Database from the Isotrace Laboratory (https://oxalid.arch.ox.ac.uk/default.html)
Pajović, M., Ćepić, M., Manojlović, M., Dubak, M., and Svrkota, R., 1982, Opšte geološke i metalogenetske karakteristike Pb-Zn mineralizacije u Crnoj Gori, In Zbornik radova: X. jubilarnog kongresa geologa Jugoslavije (eds. S. Cicmil, and Jubilarni kongres geologa Jugoslavije), 247–69, Organizacioni odbor X jubilarnog kongresa geologa Jugoslavije, Budva.
Palinkaš, L. A., 1985, Lead isotope patterns in galenas from some selected ore deposits in Croatia and NW Bosnia, Geološki Vjesnik, 38, 175–89.
Pernicka, E., Begemann, F., Schmitt-Strecker, S., Todorova, H., and Kuleff, I., 1997, Prehistoric copper in Bulgaria: its composition and provenance, Eurasia Antiqua(3), 41–180.
Pernicka, E., Begemann, F., Schmitt-Strecker, S., and Wagner, G., 1993, Eneolithic and Early Bronze Age copper artefacts from the Balkans and their relation to Serbian copper ores, Praehistorische Zeitschrift, 68, 1–54. DOI:10.1515/prhz.1993.68.1.1
Pernicka, E., Momenzadeh, M., Vatandoust, A., Adam, K., Böhme, M., Hezarkhani, Z., Nezafati, N., Schreiner, M., and Winterholler, B., 2011, Archaeometallurgical research on the Western Central Iranian Plateau, In Early Mining and Metallurgy on the Western Central Iranian Plateau (eds. A. Vatandoust, H. Parzinger, and B. Helwing), 633–87, Eurasien-Abteilung des Deutschen Archäologischen Instituts Außenstelle Teheran, Philipp von Zabern, Mainz.
Pfeiffer, K., 2013, Neue Untersuchungen zur Archäometallurgie des Sinai: die Entwicklungsgeschichte der Innovation “Kupfermetallurgie,” Menschen - Kulturen - Traditionen ForschungsCluster 2, Innovation: technisch, sozial 11, Leidorf, Rahden, Westf.
Puig, A., 1988, Geologic and metallogenic significance of the isotopic composition of lead in galenas of the Chilean Andes, Economic Geology, 83(4), 843–58. DOI:10.2113/gsecongeo.83.4.843
Recław, J., Sierpień, P., Karasiński, J., Kamenov, G., Powell, W., Marciniak-Maliszewska, B., and Kałaska, M., 2024, The origin of lead artifacts from Novae: applications of Pb isotopes in identifying the provenance of Roman artifacts from N. Bulgaria, Heritage Science, 12(1), 40. DOI:10.1186/s40494-024-01151-2
Richards, J. P., Cumming, G. L., Krstic, D., Wagner, P. A., and Spooner, E. T. C., 1988, Pb isotope constraints on the age of sulfide ore deposition and U-Pb age of late uraninite veining at the Musoshi stratiform copper deposit, Central Africa copper belt, Zaire, Economic Geology, 83(4), 724–41. DOI:10.2113/gsecongeo.83.4.724
Robertson, D. K., 1973, A model discussing the early history of the Earth based on a study of lead isotope ratios from veins in some Archean cratons of Africa, Geochimica et Cosmochimica Acta, 37(9), 2099–124. DOI:10.1016/0016-7037(73)90010-0
Rubinstein, N. A., Carrasquero, S. I., Gómez, A. L. R., Ricchetti, A. P. O., and D’Annunzio, M. C., 2018, Metallogeny of the Paramillos de Uspallata Pb–Zn–Ag vein deposit in the Cuyo Rift Basin, Argentina, Comptes Rendus Geoscience, 350(4), 164–72. DOI:10.1016/j.crte.2018.01.002
Saager, R., and Koppel, V., 1976, Lead isotopes and trace elements from sulfides of Archean greenstone belts in South Africa: a contribution to the knowledge of the oldest known mineralizations, Economic Geology, 71(1), 44–57. DOI:10.2113/gsecongeo.71.1.44
Schneider, J., 1998, Die Herkunft des Siegerländer Münzsilbers, In Der Altenberg. Bergwerk und Siedlung aus dem 13. Jahrhundert im Siegerland (eds. C. Dahm, U. Lobbedey, and G. Weisgerber), Vol. 2: Die Funde, 2 vols., 202–21, Denkmalpflege und Forschung in Westfalen 34, Habelt, Bonn.
Schneider, J., Melcher, F., and Brauns, M., 2007, Concordant ages for the giant Kipushi base metal deposit (DR Congo) from direct Rb–Sr and Re–Os dating of sulfides, Mineralium Deposita, 42(7), 791–7. DOI:10.1007/s00126-007-0158-y
Schwarz-Schampera, U., Terblanche, H., and Oberthür, T., 2010, Volcanic-hosted massive sulfide deposits in the Murchison greenstone belt, South Africa, Mineralium Deposita, 45(2), 113–45. DOI:10.1007/s00126-009-0266-y
Shafiei, B., 2010, Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic-metallogenetic implications, Ore Geology Reviews, 38(1–2), 27–36. DOI:10.1016/j.oregeorev.2010.05.004
Shahabpour, J., and Kramers, J. D., 1987, Lead isotope data from the Sar-Cheshmeh porphyry copper deposit, Iran, Mineralium Deposita, 22(4), 278–281. DOI:10.1007/BF00204520
Siron, C. R., 2018, Magmatic, Structural, and Metallogenic Framework of the Kassandra Mining District, Chalkidiki Peninsula, Northern Greece, PhD thesis, Cornell University, Ithaca. DOI:10.7298/X4QZ2866
Stephens, J., 2016, Assessing the suitability of southern Africa for archaeological provenance studies with lead isotopes, MA dissertation, University of Arizona, Tuscon.
Stephens, J., Killick, D., and Chirikure, S., 2023, Reconstructing the geological provenance and long-distance movement of rectangular, fishtail, and croisette copper ingots in Iron Age Zambia and Zimbabwe, PLOS ONE, 18(3), e0282660. DOI:10.1371/journal.pone.0282660
Stos-Gale, Z. A., 1989, Cycladic Copper Metallurgy, In Old world archaeometallurgy: proceedings of the International symposium Old world archaeometallurgy. Heidelberg 1987 (eds. A. Hauptmann, E. Pernicka, and G. A. Wagner), Vol. 7, 279–93, Der Anschnitt, Beiheft, Deutsches Bergbau-Museum, Bochum.
Stos-Gale, Z. A., 2001, The impact of the natural sciences on studies of hacksilber and early silver coinage, In Hacksilber to coinage: new insights into the monetary history of the Near East and Greece. A collection of eight papers presented at the 99th Annual Meeting of the Archaeological Institute of America (eds. M. S. Balmuth, Archaeological Institute of America, and American Numismatic Society), 53–76, Numismatic studies 24, American Numismatic Society, New York.
Stos-Gale, Z. A., Gale, N. H., Houghton, J., and Speakman, R., 1995, Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 1, Ores from the Western Mediterranean, Archaeometry, 37(2), 407–15. DOI:10.1111/j.1475-4754.1995.tb00753.x
Stos-Gale, Z. A., Gale, N. H., and Annetts, N., 1996, Lead Isotope Data from the Isotrace Laboratory, Oxford: Archaeometry Data Base 3, Ores from the Aegean, Part 1, Archaeometry, 38(2), 381–90. DOI:10.1111/j.1475-4754.1996.tb00784.x
Stos-Gale, Z. A., Gale, N. H., and Zwicker, U., 1986, The copper trade in the south east Mediterranean region: preliminary scientific evidence, Report of the Department of Antiquities, Cyprus, 122–44.
Stos-Gale, Z. A., Kayafa, M., and Gale, N. H., 1999, The origin of metals from the bronze age site of Nichoria, Opuscula Atheniensia, 24, 99–120.
Stos-Gale, Z. A., Maliotis, G., Gale, N. H., and Annetts, N., 1997, Lead isotope characteristics of the Cyprus copper ore deposits applied to provenance studies of copper oxhide ingots, Archaeometry, 39(1), 83–123. DOI:10.1111/j.1475-4754.1997.tb00792.x
Stos-Gale, Z. A., and Gale, N. H., 1981, Sources of galena, lead and silver in predynastic Egypt, Revue d’Archéometrie, Supplement (Actes du XXe symposium international d’archéométrie Paris 26-29 mars 1980 Volume III), 285–96. DOI:10.3406/arsci.1981.1158
Stos-Gale, Z. A., and Gale, N. H., 1985, Metal Sources and the Metal Trade in the Bronze Age Aegean - The Isotopic Evidence. Mycenaean Seminar, 20 February, Institute of Archaeology, London, Bulletin of the Institute of Classical Studies, 32, 157-158.
Stos-Gale, Z. A., and Gale, N. H., 1992, New light on the provenance of the copper oxhide ingots found on Sardinia., In Sardinia in the Mediterranean: A footprint in the sea (eds. R. H. Tykot, T. K. Andrews, and M. Balmuth), Vol. 3, 317–45, Monographs in Mediterranean archaeology, Sheffield Academic Press, Sheffield.
Swainbank, I. G., Shepherd, T. J., Caboi, R., and Massoli-Novelli, R., 1982, Lead isotopic composition of some galena ores from Sardinia, Periodico di Mineralogia, 51, 275–86.
Tilton, G. R., Pollak, R. J., Clark, A. H., and Robertson, R. C. R., 1981, Isotopic composition of Pb in Central Andean ore deposits, In Nazca Plate: Crustal Formation and Andean Convergence (eds. L. V. D. Kulm, J. Dymond, E. J. Dasch, D. M. Hussong, and R. Roderick), 791–816, Memoir (Geological Society of America) 154, Geological Society of America. DOI:10.1130/MEM154-p791
Tombros, S. F., Kokkalas, S., Seymour, K. St., Voudouris, P. C., Williams-Jones, A. E., Zhai, D., Liu, J., and Fitros, M. G., 2021, The Kallianos Au-Ag-Te mineralization, Evia Island, Greece: a detachment-related distal hydrothermal deposit of the Attico-Cycladic Metallogenetic Massif, Mineralium Deposita, 56(4), 665–84. DOI:10.1007/s00126-020-00989-3
Tosdal, R. M., and Munizaga, F., 2003, Lead sources in Mesozoic and Cenozoic Andean ore deposits, north-central Chile (30–34°S), Mineralium Deposita, 38(2), 234–50. DOI:10.1007/s00126-002-0307-2
Townley, B. K., and Godwin, C. I., 2001, Isotope characterization of lead in galena from ore deposits of the Aysén Region, southern Chile, Mineralium Deposita, 36(1), 45–57. DOI:10.1007/s001260050285
Triantafyllidis, S., Tombros, S. F., Zhai, D., and Kokkalas, S., 2021, The upper Cretaceous Ermioni VMS deposit, Argolis Peninsula, Peloponnese, Greece: Type, genesis, and geotectonic setting, Ore Geology Reviews, 138, 104403. DOI:10.1016/j.oregeorev.2021.104403
Ulrych, T. J., Burger, A., and Nicolaysen, L. O., 1967, Least radiogenic terrestrial leads, Earth and Planetary Science Letters, 2(3), 179–84. DOI:10.1016/0012-821X(67)90125-2
Valera, R. G., Valera, P. G., and Rivoldini, A., 2005, Sardinian ore deposits and metals in the Bronze Age, In Archaeometallurgy in Sardinia: From the origins to the beginning of the Early Iron Age (eds. F. Lo Schiavo, A. Giumlia-Mair, U. Sanna, and R. Valera), Vol. 30, 43–88, Monographies instrumentum, Éditions Monique Mergoil, Montagnac.
Vavelidis, M., Bassiakos, I., Begemann, F., Patriarcheas, K., Pernicka, E., Schmitt-Strecker, S., and Wagner, G. A., 1985, Geologie und Erzvorkommen, In Silber, Blei und Gold auf Sifnos. Prähistorische und antike Metallproduktion (eds. G. A. Wagner, G. Weisgerber, and W. Kroker), Vol. 3, 59–80, Der Anschnitt, Beiheft, Deutsches Bergbau-Museum Bochum, Bochum.
Vaxevanopoulos, M., Blichert-Toft, J., Davis, G., and Albarède, F., 2022, New findings of ancient Greek silver sources, Journal of Archaeological Science, 137, 105474. DOI:10.1016/j.jas.2021.105474
Velojic, M., Prelevic, D., and Jelenkovic, R., 2018, The origin of lead and sulphur in Tulare ore field, Lece magmatic complex, Se Serbia, Geoloski anali Balkanskoga poluostrva, 79(2), 19-28. DOI:10.2298/GABP1802019V
Veselinović-Williams, M., 2011, Characteristics and origin of polymetallic mineralisation in the Kopaonik region of Serbia and Kosovo, with particular reference to the Belo Brdo Pb-Zn (Ag) deposit, PhD thesis, Kingston University, London. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542473
Vinyu, M. L., Jelsma, H. A., and Frei, R., 1996, Timing between granitoid emplacement and associated gold mineralization: examples from the ca. 2.7 Ga Harare–Shamva greenstone belt, northern Zimbabwe, Canadian Journal of Earth Sciences, 33(7), 981–92. DOI:10.1139/e96-074
Wagner, G. A., Pernicka, E., Seeliger, T. C., Ötzunali, Ö., Baranyi, I., Begemann, F., and Schmitt-Strecker, S., 1985, Geologische Untersuchungen zur frühen Metallurgie in NW- Anatolien., Bull. of the Mineral Res. and Exploration Inst. of Turkey, 101/102, 45–81.
Wagner, G. A., Pernicka, E., Vavelidis, M., Baranyi, I., and Bassiakos, I., 1986, Archäometallurgische Untersuchungen auf Chalkidiki, Der Anschnitt, 38(5–6), 166–86.
Wagner, T., and Schneider, J., 2002, Lead isotope systematics of vein-type antimony mineralization, Rheinisches Schiefergebirge, Germany: a case history of complex reaction and remobilization processes, Mineralium Deposita, 37(2), 185–97. DOI:10.1007/s00126-001-0211-1
Walraven, F., and Chabu, M., 1994, Pb-isotope constraints on base-metal mineralisation at Kipushi (Southeastern Zaïre), Journal of African Earth Sciences, 18(1), 73–82. DOI:10.1016/0899-5362(94)90055-8
Wedepohl, K. H., Delevaux, M. H., and Doe, B. R., 1978, The potential source of lead in the Permian Kupferschiefer bed of Europe and some selected Paleozoic mineral deposits in the Federal Republic of Germany, Contributions to Mineralogy and Petrology, 65(3), 273–81. DOI:10.1007/BF00375513
Westner, K. J., 2017, Roman mining and metal production near the antique city of ULPIANA (Kosovo), PhD thesis, Johann Wolfgang Goethe-Universität, Frankfurt.
Westner, K. J., Vaxevanopoulos, M., Blichert-Toft, J., Davis, G., and Albarède, F., 2023, Isotope and trace element compositions of silver-bearing ores in the Balkans as possible metal sources in antiquity, Journal of Archaeological Science, 155, 105791. DOI:10.1016/j.jas.2023.105791
Wind, S. C., Schneider, D. A., Hannington, M. D., and McFarlane, C. R. M., 2020, Regional similarities in lead isotopes and trace elements in galena of the Cyclades Mineral District, Greece with implications for the underlying basement, Lithos, 366–367, 105559. DOI:10.1016/j.lithos.2020.105559
Zentelli, M., Doe, B., Hedge, C., Alvarez, O., Tidy, E., and Daroca, J., 1988, Isotopos de plomo en yacimientos de tipo pòrfido cuprífero comparados con otros depósitos metalíferos en los Andes del norte de Chile y Argentina, V Congreso Geológico Chileno, Departamento de Geología y Geofísica, Universidad de Chile, 1, B331–69.
Zwicker, U., Gale, N. H., and Gale, Z. A., 1991, Metallographische, analytische und technologische Untersuchungen sowie Messungen der Bleiisotope an Otto-Adelheid-Pfennigen und Vergleichsmünzen meist aus dem 9.-11. Jahrhundert. Ein Beitrag zur Münzprägung der sächsischen Kaiser, In Otto-Adelheid-Pfennige: Untersuchungen zu den Münzen des 10./11. Jahrhunderts (eds. G. Hatz, V. Hatz, U. Zwicker, N. Gale, and Z. Gale), Vol. 7, 59–146, Commentationes de Nummis Saeculorum IX-XI in Suecia Repertis Nova Series, The Royal Swedish Academy of Letters, History and Antiquities, Stockholm.
Interface of the app
The interface of the app consists of five parts:
- The menu, which can be shown/hidden with the button 1a
- The header with two options to control the app’s appearance: Toggle full screen mode (2a) and toggle light/dark mode (2b)
- Different filter for the database, which can be shown/hidden (3a) and unpinned/pinned (3b)
- The footer
- The work area. All windows here can be collapsed and also maximised. If maximised, their content will be scaled accordingly.
Filter the database
A wide range of options are provided to filter the database. The elements in the header (1 to 4) can be used to adjust some general settings and the elements in the filter area (5 to 13) allow to select data according to specific criteria.
- The database to be used. Currently, only “Ores & minerals” are supported but it is planned to provide additional datasets in the future
- Whether the whole dataset or only reliable data should be used. The reliability of the data is based solely on the analytical method and excludes all analyses pre-1974 (no mass bias correction) and analyses not measured with a TIMS or MC-ICP-MS (too imprecise). By default, this option is active.
- If only data with exact locations should be used or not. Sometimes, the location or site where the sample was taken cannot be reconstructed. In these cases, coordinates of the next smallest reliably determinable geographical or administrative entity are recorded.
- Whether “unknowns” should be excluded or not. Similar to the location, e.g. the mining site is not always reported. This option is only working on the current subsetting variable. Consequently, switching this variable (e.g. to the country) can change the number of displayed data points. Activating this option will also prevent the appearance of a legend item “unknown” in the plots.
- Select only data located in the specified modern country.
- Select only data located in the specified modern political provinces of the selected countries. They appear in the order of the selected countries.
- Select only data located in the specified mining regions in the selected countries. They appear in the order of the selected countries.
- Select only data from specific sites located within the modern political provinces or mining regions.
- Restrict the selection to samples from deposits that were formed in the selected geological epochs/ages.
- Restrict the selection to minerals that are contained in the ore (brackets around a mineral indicate that this is only a subordinate phase of the ore).
- Restrict the selection to metals that can be (theoretically) produced from the ores (brackets around an element indicate that only minor amounts of this metal could be produced). This does not necessarily mean that all metals given here were also extracted from the ore, and the produced metal(s) may be subject to changes over time.
- Restrict the instrument(s) used to produce the data.
- Restrict the selection to publications of a certain range of year, e.g. all publications after 2000.
How the filter work:
- Click on the items in the list to select multiple ones. In the
dropdown lists, you can remove them from the filter by clicking on
an item (it changes the colour) and pressing
DELETE
. - Changing a filter on a higher level (e.g. country) will reset all filter on the lower levels (e.g. mining area). This holds also true for switching between reliable data and the full data set.
- All items within the same filter are OR connected, i.e. picking galena and chalcopyrite as minerals will yield all data that contain galena OR chalcopyrite (or both) beside other mineral phases.
- Area above the horizontal line (5 to 8)
- You must pick one or multiple countries.
- Based on the picked countries, the respective provinces and mining areas become available. Provinces and mining areas are OR connected (e.g. picking Italy and Egypt as countries and then Sardinia as province and the Eastern Desert as mining area will show all data from Sardinia and the Eastern Desert).
- Based on the chosen provinces and mining areas, the mining sites become available narrow the selection further if desired.
- Area below the horizontal line (9 to 13):
- Changing filters above the horizontal line will reset the filters below the horizontal line.
- These filters will be applied on the selection obtained from the
filters 5 to 8. If no items are picked, the entire database will
be filtered to display e.g. all copper ores or all ores
containing galena.
- All filters in this area are connected by AND conditions. For example, picking Cu as commodity and MC-ICP-MS as instrument will yield only copper ores measured by MC-ICP-MS.
- The menu “Upload” provides an auto-match function for uploaded data. See the respective chapter for further details.
Map
The selected data (and any uploaded data) are displayed in the map and in the preview plots in the same colours. The plots are static and intended for preview only. You can modify these elements with the following options:
- This is the category according to which the data will be subset. It is the same like for the plots (see next chapter).
- You can choose between three predefined axis-combinations for the preview.
- You can jump to a specific location by providing the respective coordinates as decimal degrees and pressing the “Go!” button.
- You can choose between different maps (including satellite images) and show/hide the reference data (and the uploaded data).
Clicking on points with a number in the map will centre the map on the area of the previously collapsed points. Hovering with the mouse over a point in the map gives some basic information to the respective data. Please do not get confused: Points with numbers are colour-coded according to the number of points they are containing. Colours according to the subsetting variable are only applied to individual points.
Explore
On this page you can explore the data more closely and customise the plots before downloading them for publication. It consists of two independent plots. Only two options are the same for both plots: the subsetting variable (1a) and the colour palette (1b).
Depending on the number of the selected variables (2), certain kinds of plots (“styles”) can be chosen (3). Transparency and size (point size or line width in millimetres) can be set for all plots in the column “Design” (4). Specific options for each kind of plot are provided in the second column if available (5, see below).
Plots are provided in an interactive view (6a) and as a preview of the print version, i.e. the one you can download (6b). There are two exceptions: 3D scatter plots can only be viewed interactively and not downloaded. If really necessary, a snapshot can be made with the small camera icon from the toolbar in the upper right corner of the plot. 2D density plots are not available in the interactive plots.
In the interactive scatter plots (styles “Point” and “2D scatter”), specific data can be selected via the “Box select” or the “Lasso” tool in the upper right corner of the respective plot (7). A table with the selected data will be displayed in the “data table tab” (8) for closer inspection. An explanation for most of the icons in this toolbar can be found here and we encourage you do play around with them.